In de sportwereld wordt vaak gesproken van VO2max, wat staat voor je maximale zuurstofopname. Deze parameter zegt iets over je niveau als atleet en kan tevens gebruikt worden bij het opstellen van je individuele trainingszones. Je VO2max wordt bepaald a.d.h.v. metingen van de gasuitwisseling tijdens een inspanningstest. Hier kom je meer te weten over de gasmetingen tijdens een inspanningstest en over de betekenis van VO2max.
In De inspanningscurve: theorie achter trainingszones werd deze theorie toegelicht a.d.h.v. de lactaatcurve die wordt opgesteld tijdens een inspanningstest. De aerobe en anaerobe drempel verdelen deze curve in drie zones waarbinnen je – afhankelijk van je doel – kan trainen. Wanneer je zo’n inspanningstest afneemt worden er nog meer metingen uitgevoerd dan alleen maar je lactaatwaarden. Een belangrijke meting is de gasuitwisseling, welke wordt gebruikt om je maximale zuurstofopname (VO2max) te bepalen. De gegevens die hierbij worden verzameld, geven veel info over je drempels en over je niveau als atleet.
Hier kom je te weten welke gassen worden gemeten, waarna wordt uitgelegd hoe deze juist worden geregistreerd tijdens een inspanningstest. Vervolgens wordt het belang van zuurstof a.d.h.v. VO2max en koolstofdioxide a.d.h.v. buffering toegelicht, om uiteindelijk de gekende definities voor de aerobe en anaerobe drempel aan te vullen met deze nieuwe informatie.
De gassen in je lichaam tijdens een inspanning
Wanneer je sport heeft je lichaam zuurstof (O2) nodig om energie te leveren voor de inspanning (zie aeroob energiesysteem) – zonder dit gas kan je uiteraard niet overleven. Je ademt zuurstof in en dat komt via je longen in je bloed, waardoor het wordt vervoerd naar verschillende organen, zoals je werkende spieren gedurende het sporten. Je spieren zullen het aangevoerde zuurstof gebruiken via ingewikkelde biochemische processen om je lichaam van energie te voorzien.
Een tweede belangrijk gas betreffende inspanning is koolstofdioxide (CO2). Dit wordt, in tegenstelling tot zuurstof, niet gebruikt maar gevormd tijdens de verscheidene biochemische processen die plaatsvinden in je sportende lichaam. Zo ontstaat er CO2 enerzijds tijdens de verbranding van koolhydraten (onder de vorm van glucose) en vetten (onder de vorm van vrije vetzuren), en anderzijds tijdens de buffering van een afvalproduct dat wordt gevormd tijdens inspanning (zie verder).
Kort samengevat wordt tijdens het sporten voornamelijk zuurstof aangevoerd (inademen) en koolstofdioxide afgevoerd (uitademen) van de spieren.
Meting van de gasuitwisseling tijdens een inspanningstest
Het is hoofdzakelijk de uitwisseling van deze twee belangrijke gassen (O2 en CO2) die worden gemeten tijdens een inspanningstest. Je kent het beeld wel van de typische inspanningstesten: sporters die aan het afzien zijn op de fiets of de loopband met een masker of mondstuk. Het is via dit mondstuk dat je gasuitwisseling wordt gemeten terwijl je de test aan het afleggen bent.
De lucht die je uitademt komt terecht in het mondstuk en wordt via een kleine buis gebracht naar een meettoestel (een spirometer) waar de concentraties zuurstof en koolstofdioxide van de uitgeademde lucht bepaald worden. De waarden van de lucht die je hebt uitgeademd wordt vergeleken met de bekende concentraties zuurstof (20,93%) en koolstofdioxide (0,03%) van de lucht die je altijd inademt – dus ook wanneer je sport. Door de in- en uitgeademde lucht te vergelijken kan je berekenen hoeveel koolstofdioxide geproduceerd werd door je lichaam (CO2 ingeademd is kleiner dan CO2 uitgeademd) en hoeveel zuurstof werd opgenomen (O2 ingeademd is groter dan O2 uitgeademd) doorheen de hele inspanning. Deze laatste waarde krijgt de naam ‘zuurstofopname’ (VO2) en wordt absoluut uitgedrukt in liter zuurstof per minuut (l/min) of relatief in milliliter zuurstof per minuut per kilogram (ml/min/kg).
Maximale zuurstofopname: wat is dat?
Wanneer de zuurstofopname tijdens een graduele inspanningsproef (stijgende intensiteit) in een grafiek wordt gezet, wordt volgende curve verkregen:
Je ziet dat de zuurstofopname tijdens elke verhoging even nodig heeft om te stabiliseren. Het cardiovasculair en het musculair systeem moeten zich namelijk progressief aanpassen aan de inspanning. De zuurstofopname zal stijgen met een toenemende belasting, dit tot de curve duidelijk afvlakt: de zuurstofopname stijgt niet meer terwijl de intensiteit nog wel toeneemt. Dit is het punt van je maximale zuurstofopname of VO2max: de maximale hoeveelheid zuurstof die je spieren (lichaam) per tijdseenheid kunnen opnemen en gebruiken voor de productie van energie. Of met andere woorden: je bloedsomloop heeft haar maximale transportcapaciteit voor zuurstof bereikt. Iemand die dus meer zuurstof kan opnemen, kan meer energie produceren en een betere prestatie leveren. Het is deze parameter die je maximale uithoudingsvermogen (het vermogen van je lichaam om gedurende lange tijd een lichamelijke inspanning te kunnen volhouden) bepaalt.
Het is dan ook zo dat personen met een hoge maximale zuurstofopname meestal uitblinken in uithoudingssporten of de zogenaamde duursporten (lopen, fietsen, zwemmen, langlaufen, …). Het is namelijk een prestatiebepalende factor in deze sporten. Om verschillende atleten met elkaar te vergelijken wordt de zuurstofopname gedeeld door het lichaamsgewicht en wordt dan uitgedrukt in milliliter zuurstof per minuut per kilogram (ml/min/kg).
De waarden voor VO2max liggen ongeveer tussen de 10 (niet getraind, overgewicht, pathologie) en 90 ml/min/kg (mannelijke topatleet cross-country skiën). Een gemiddelde VO2max voor 20-jarige mannen is 40-45 ml/min/kg en voor een voetballer is dit ongeveer 55-60 ml/min/kg.
Welke factoren bepalen je maximale zuurstofopname?
Je VO2max wordt beïnvloed door allerlei zaken:
-
- Testmethode. Hoe meer spiermassa wordt ingezet bij een inspanning, des te hoger de maximale zuurstofopname. Zo ligt je VO2max als je een inspanningstest aflegt op een loopband dan ook meestal hoger dan wanneer je de test zou afleggen op een fiets (behalve voor zeer goed getrainde wielrenners) aangezien je bij het lopen je been- en armspieren gebruikt, en bij het fietsen vooral je beenspieren het werk doen.
- Leeftijd. Je bereikt de piek van je maximale zuurstofopname rond je 18-20 jaar, waarna deze stabiel blijft tot je 30 jaar bij inactiviteit en tot je 40-45 jaar bij training. Hierna zal het dalen met ongeveer 0,6% per jaar, primair te wijten aan de daling van je hartslag (wat leeftijdsgebonden is). Het is namelijk zo dat hoe meer zuurstof je hart naar je spieren kan sturen, hoe hoger je VO2max ligt. Wanneer je hartslag daalt (wat gebeurt bij het ouder worden) zal er een lagere toevoer zijn van zuurstof van het hart naar je spieren, met als gevolg een lagere maximale zuurstofopname.
- Geslacht. De VO2max ligt bij mannen gemiddeld 15 tot 30% hoger dan bij vrouwen. Dit zou te wijten zijn aan verschillende lichaamssamenstellingen (vrouwen hebben bijvoorbeeld meer lichaamsvet) en een hoger hemoglobinegehalte bij de man (hemoglobine is de stof die zuurstof vervoert in het bloed).
- Erfelijkheid. Studies met tweelingen (ideaal om de erfelijkheid van verschillende zaken te onderzoeken) wijzen uit dat je maximale zuurstofopname voor een groot deel (tot 93%) wordt bepaald door genetische factoren. Om deze reden ben je toch ietwat wel of niet voorbeschikt voor uithoudingssporten.
- Trainingstoestand. Doordat je genetische factoren voornamelijk je VO2max bepalen, is deze parameter nog beperkt trainbaar (20-25%). Dit kan je doen door uithoudingstraining. Het trainingseffect betreffende de VO2max zal voornamelijk zichtbaar zijn bij beginnende sporters. Als je al lang aan het trainen bent, zal je hoogst mogelijke VO2max hoogstwaarschijnlijk al behaald zijn.
- Trainingsstatus. Je maximale zuurstofopname zal ongetwijfeld lager liggen dan deze van pakweg Koen Naert, een Belgische marathonloper. De VO2max-waarden van getrainde atleten liggen beduidend hoger dan deze van ongetrainden. Binnen sporten bestaat er tevens een onderscheid in de waarden van de allerbesten. Zo worden bijvoorbeeld de hoogste waarden gevonden bij langlaufers aangezien ze zowel hun armen als benen gebruiken, gevolgd door marathonlopers en biatlon, met gymnasten en gewichtheffers als hekkensluiters. Hoe minder uithouding ertoe doet in je sport (aerobe energielevering: zuurstof), hoe lager de VO2max zal liggen van de atleten.
Intensiteit uitdrukken d.m.v. je VO2max
Naast het percentage van je maximale hartslag (%HSmax) of je hartslagreserve (%HSreserve), kan tevens het percentage van je maximale zuurstofopname (%VO2max) gebruikt worden om de intensiteit van een inspanning of je training uit te drukken. Het gaat zelfs nog verder: %VO2max wordt gebruikt om te kijken of je aerobe en/of anaerobe drempel nog verbeterd kunnen worden en dus naar rechts kunnen worden opgeschoven op de inspanningscurve. Hierbij zet je je VO2 van je aerobe of je anaerobe drempel op je VO2max. Laten we het uitleggen a.d.h.v. een voorbeeld:
Lars legt een inspanningstest af op de loopband. Achteraf wordt zijn aerobe drempel (snelheid: 10,8 km/h en VO2: 42,3 ml/min/kg), anaerobe drempel (snelheid: 15,8 km/h en VO2: 58,2 ml/min/kg) en zijn VO2max (66,7 ml/min/kg) bepaalt. Als we zijn aerobe drempel relateren aan zijn maximale zuurstofopname kunnen we concluderen dat zijn aerobe drempel ligt op 63,4% van zijn VO2max (= 42,3/66,7). Hetzelfde wordt gedaan voor zijn anaerobe drempel: deze ligt op 87,3% VO2max (= 58,2/66,7).
Algemeen wordt er aanvaard dat je aerobe drempel opgedreven kan worden naar ongeveer 70% VO2max en je anaerobe drempel tot ongeveer 90-92% VO2max. Op deze manier kan worden nagegaan of je je drempels nog kan opschuiven en je dus veel basis moet trainen (voor je aerobe drempel) of net intensiever moet trainen (voor je anaerobe drempel). Kijk hiervoor terug naar de uitleg over de verschillende trainingszones in De inspanningscurve: de theorie achter trainen.
Zo kan Lars beide drempels nog verbeteren: zijn aerobe drempel ongeveer met 6% en zijn anaerobe drempel ongeveer met 4%. Hij start het best met voldoende basis te trainen om eerst en vooral zijn aerobe drempel te perfectioneren.
Wat is dan de betekenis van koolstofdioxide tijdens inspanning?
Je weet nu al heel veel over de rol van zuurstof tijdens de meting van je gasuitwisseling wanneer je een inspanningstest uitvoert. De gemeten concentraties koolstofdioxide zijn zeker niet minder belangrijk. Hierboven werd reeds vermeld dat CO2 wordt geproduceerd enerzijds door de verbranding van voedingsstoffen (koolhydraten en vetten) en doordat er anderzijds een buffering plaatsvindt. Hiervoor moet je terugdenken aan de kennis over de vorming van melkzuur wanneer koolhydraten als energiebron worden verbruikt tijdens de inspanningstest. Op een bepaald moment vindt er een eerste lichte stijging plaats in je lactaatcurve (je aerobe drempel): er wordt melkzuur gevormd door de verbranding van koolhydraten, en zal splitsen in lactaat en waterstofionen (waarvan deze laatste instaat voor de verzuring van je lichaam). Er is echter een bepaalde hoeveelheid bicarbonaat aanwezig (HCO3) in je lichaam dat kan reageren met waterstofionen waardoor water en koolstofdioxide wordt gevormd:
Bicarbonaat + waterstofion ⟹ water + koolstofdioxide
HCO3 + H+ ⟹ H2O + CO2
Doordat bicarbonaat reageert met de waterstofionen, wordt je lichaam geneutraliseerd en zal de hoeveelheid van deze ionen in je sportende lichaam op pijl worden gehouden waardoor je nog niet in verzuring gaat. De gemeten hoeveelheid CO2 via je mondmasker zal op het moment van je aerobe drempel beperkt toenemen door de buffering. Als de intensiteit (snelheid/wattage) wordt opgedreven zal er zoveel lactaat en waterstofionen worden gevormd dat je lichaam het niet meer aankan om deze ionen te neutraliseren: je buffercapaciteit is overschreden en je hebt je anaerobe drempel bereikt: de lactaatconcentratie gaat sterk de lucht in.
Met deze info kunnen we de reeds opgestelde definities van de aerobe en de anaerobe drempel aanpassen:
Aerobe drempel
De eerste drempel – of de aerobe drempel – is de belasting (wattage/snelheid) waarop je lichaam tijdens de inspanning melkzuur (en dus waterstofionen en lactaat) begint te vormen als bijproduct van de aerobe verbranding van suikers (aerobe energielevering: gebruik van zuurstof). Het is een indicator voor de verschuiving van hoofdzakelijk vetverbranding naar de verbranding van suikers als energiebron. De gevormde waterstofionen, die instaan voor verzuring, worden gebufferd door bicarbonaat.
⟹ De snelheid die je kan aanhouden zonder te veel energie te moeten leveren.
Anaerobe drempel
De tweede drempel – of de anaerobe drempel – is de belasting (wattage/snelheid) waarop je lichaam tijdens de inspanning niet meer voldoende zuurstof opneemt om het gevormde melkzuur te neutraliseren en je lactaat bijgevolg begint op te hopen in de spieren en het bloed. Het is een indicator voor de verschuiving van voornamelijk de verbranding van suikers waarbij zuurstof wordt gebruikt (aeroob), naar de splitsing van suikers zonder de tussenkomst van zuurstof (anaerobe energielevering) waarbij lactaat als restproduct overblijft. De anaerobe drempel is kortweg je verzuringsgrens. Dit is het moment dat de buffercapaciteit van je lichaam (bicarbonaat) wordt overschreden en de gevormde waterstofionen niet meer geneutraliseerd kunnen worden waardoor je lichaam in verzuring zal gaan.
⟹ De snelheid waarbij je in het rood gaat tijdens je inspanning.